
Technical Report

CMU/SEI-87-TR-15
ESD-TR-87-116

Carnegie-Mellon University

Software Engineering Institute

The Use of Representation Clauses
and Implementation-Dependent
Features in Ada:

IIA. Evaluation Questions
B. Craig Meyers

Andrea L Cappelllnl

July 1987

>

\

ADAvMier

Technical Report
CMU7SEI-87-TR-15

ESD/TR-87-116
July 1987

The Use of Representation Clauses
and Implementation-Dependent

Features in Ada:
MA. Evaluation Questions

B. Craig Meyers
Andrea L. Cappellini

Ada Embedded Systems Testbed Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
HanscomAFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Daniel Burton
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1987 by the Software Engineering Institute

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station. Alexandria. VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on ordering,
please contact NTIS directly: National Technical Information Sen/ices, U.S. Department of Commerce. Springfield, VA 22161

Ada is a registered trademark of the U.S. Department of Defense. Ada Joint Program Office. MicroV/oc, VAX. VAXELN. and VMS
are trademarks of Digital Equipment Corporation.

Table of Contents
1. Introduction 1

2. Discussion 3

3. Summary 7

References 9

Appendix I: Questions Relevant to the Use of Representation Clauses and 11
Implementation-Dependent Features

CMU/SEI-TR-15

The Use of Representation Clauses
and Implementation-Dependent Features

in Ada:
IIA. Evaluation Questions

Abstract: This report is the second in a series on the use of representation clauses and
implementation-dependent features in Ada. It is the purpose of this document to specify a
set of questions relevant to the assessment of the support of representation clauses and
implementation-dependent features provided by an Ada compiler. The questions identified
are categorized according to functionality and address both qualitative and quantitative as-
pects.

1. Introduction
The Ada language was developed as a general-purpose language with specific application to
mission-critical systems for the Department of Defense (DoD). The language is now mandated for
use in real-time, mission-critical systems, as specified in reference [1].

In spite of the attempt to define Ada as a general-purpose language, a need to support
implementation-dependent functionality remained. This amounted to the language providing for a
coupling to the specific underlying architecture. Much of this support is defined in terms of represen-
tation clauses and implementation-dependent features which are discussed in Chapter 13 of the
Reference Manual for the Ada Programming Language [2].

The support for a particular type of representation clause is an implementation-dependent issue. In
other words, the degree to which a type of representation clause is supported, if at all, is left to the
discretion of a compiler developer. In view of the fact that many systems may need to implement the
functionality supported through representation clauses, it is clearly advantageous to assess different
compilers from this perspective.

It is the purpose of this document to specify a set of issues relevant to the evaluation of the support of
representation clauses and implementation-dependent features for a given compiler. The questions
identified are categorized according to functionality and address both qualitative and quantitative
aspects.

This report is one of a series dealing with the use of representation clauses and implementation-
dependent features in Ada. The first volume in the series, reference [3], provides an overview of the
use of representation clauses and implementation-dependent features. A number of case study
examples, drawn from existing systems, illustrate the application of the machine-dependent charac-
teristics of Ada. The following volume in the series deals with methodology and experimental proce-
dures for the assessment of representation clauses and implementation-dependent features [4]. A
qualitative examination of the VAX Ada compiler, based on the framework developed here, has been
reported [5].

CMU/SEI-TR-15

This report has been prepared by the Ada Embedded Systems Testbed Project at the Software
Engineering Institute (SEI). The SEI is a federally funded research and development center (FFRDC)
sponsored by the Department of Defense and established and operated by Carnegie Mellon Univer-
sity. This report is based on work performed by the authors while they were on sabbatical leave at
the SEI.

CMU/SEI-87-TR-15

2. Discussion
A characteristic of many mission-critical systems is that they manifest a need to implement functional
capabilities which are directly related to the underlying machine architecture. This includes, for ex-
ample, the ability to process "packed" data structures, access data of specific lengths, and format
internal data representations in machine-dependent terms. Another example is provided by require-
ments to conform to constraints imposed by external hardware devices. Thus, some external device
may directly map data into memory which is available at some fixed address.

In the development of the Ada language, the developers recognized that there was a need to provide
a coupling between the language and the underlying machine architecture. This coupling is affected
through the use of representation clauses and other implementation-dependent features in Ada. For
example, pragma PACK may be specified which minimizes storage allocation for arrays and records.
There are also representation clauses for specifying the maximum amount of storage to be allocated
for objects of a particular type, specifying the values associated with enumerated data types, and
defining the precise layout of data within a record structure. Additionally, representation clauses may
be used to allow a program to access a specific address. Representation clauses also exist which
apply to information relative to tasking; however, discussion of this latter type of representation clause
is beyond the scope of this report.

We emphasize that the support for representation clauses and implementation-dependent features is
left to the developer of a particular compiler. The language does not require that a compiler provide
support for all of the representation clauses or implementation-dependent features which are defined
as part of the language. This has several implications, including the following:

1. The expected support for representation clauses may vary widely across different com-
pilers. Some compilers may provide a wide range of support, while others may provide
little support.

2. The manner of implementation for machine-dependent features may also be expected
to vary between different compilers. Note that it is in the area of representation clauses
where the ability to couple to the underlying architecture may be most noticeable.
Therefore, some compilers may provide more support for these language elements
than others; this may be an inherent reflection of the underlying machine. As an ex-
ample, a virtual machine architecture may not provide the support for a representation
clause to access a specific address.

The preceding clearly has an impact on application designers of mission-critical systems who are
required to use machine-dependent features. This impact may be manifest in either or both of the
following ways:

1. It is required that the application developer be clearly aware of the support provided for
representation clauses and implementation-dependent features. It is important for the
developer to understand the compiler support, as well as the limitations of a particular
compiler. In fact, one may go so far as to say that the choice of a particular compiler
may, in some cases, depend on the support provided for representation clauses and
implementation-dependent features.

2. It is expected that the application developer will need to examine alternative ap-
proaches to the use of representation clauses for a particular problem. That is, if the
chosen compiler does not implement some language-defined aspect of representation

CMU/SEI-TR-15

clauses, and if the associated functional capability is needed, the developer is forced to
consider alternative means in finding a solution to the problem.

It is recognized, therefore, that a need exists for the assessment of support provided for represen-
tation clauses and implementation-dependent features by various compilers. As implied above, this
assessment is especially needed since the language does not require any compiler to implement the
support for representation clauses and implementation-dependent features as defined in reference
[2]. The ability to assess a set of compilers can be of benefit to those involved in the development of
mission-critical systems.

As one element of an assessment process, those issues relevant to the assessment of representation
clauses and implementation-dependent features needed to be defined. These issues have been
identified in terms of a set of questions which appear in Appendix I. The questions specified in
Appendix I have been grouped in terms of functional support relating to the various aspects of repre-
sentation clauses and implementation-dependent features defined by the language. The areas are
the following:

1. general
2. data types supported
3. pragma PACK
4. length clauses

5. enumeration representation clauses

6. record representation clauses

7. address clauses

8. data conversion and assignment
9. representation attributes

10. miscellaneous

The questions listed in Appendix I may be grouped into two basic categories. On the one hand, there
are questions which are principally qualitative in nature. Characteristically, this type of question may
be answered by reference to the documentation provided by a particular compiler. In some cases,
these questions may involve a limited analysis of generated code as well. On the other hand, there
are questions which are essentially quantitative in nature. For this class of questions, a complete
evaluation is expected to require a possibly large amount of experimentation. It is this latter type of
question which provides details of execution timing and code size, for example. It is noted that in the
context of this work, a broad interpretation of quantitative is taken. That is, not only are typical
performance issues included, but so too are evaluations of the manner in which a particular feature is
implemented.

The questions delineated in Appendix I refer to the assessment of a particular compiler; they are not,
for example, general issues dealing with a particular assessment methodology. However, one should
equally recognize that the development of a particular methodology also has certain associated is-
sues. Discussions along the preceding lines are provided in another document in this series [4].

CMU/SEI-87-TR-15

The questions specified in Appendix I form a basic starting point for the application of experimental
procedures to assess the support of representation clauses and implementation-dependent features
by any given compiler. In some sense, the questions appearing in Appendix I are an implicit set of
guidelines which an experimental procedure may be expected to follow. The details of an appropriate
methodology, and the associated experimental procedures, are found in reference [4].

The questions appearing in Appendix I apply to the larger issue of compiler assessment. It is to be
recognized, however, that either qualitative or quantitative assessments may be conducted. A start
has been made in this direction. Thus, reference [5] reports on a qualitative assessment for a partic-
ular compiler, and it is expected that others will follow. The qualitative assessments are based on a
subset of the questions appearing in Appendix I. The performance of quantitative assessments is a
considerably larger problem, although a methodology has been formulated in some detail and ap-
pears in reference [4].

It has been the purpose of this document to delineate those issues relevant to the assessment of
compilers from the perspective of support provided for representation clauses and implementation-
dependent features. This document is necessarily short to maintain focus on the issues relevant to
assessment. Other volumes in the series incorporate the issues delineated here into the larger
framework of a methodology.

CMU/SEI-TR-15

CMU/SEI-87-TR-15

3. Summary
Although the Ada language was developed as a general-purpose language with application to
mission-critical systems, a need to provide a coupling between the language and the underlying
machine was recognized. This coupling is accomplished, in part, through the use of representation
clauses and implementation-dependent features. However, the amount of support provided for these
language features is left to the compiler developer.

The recognized need for representation clauses and implementation-dependent features by many
systems, as well as the expected variability of support among compilers, motivates the need for
assessment. This document delineates those issues which are believed germane to the assessment
of support provided by a given compiler for representation clauses and implementation-dependent
features. The issues are qualitative, as well as quantitative. This document, in addition to a discus-
sion of experimental procedures [4], provides a framework for conducting assessments.

CMU/SEI-TR-15

8 CMU/SEI-87-TR-15

References
1. DoD Instruction 5000.31, July 1986. DoD Directive 3405.2, March 30,1987.
2. Reference Manual for the Ada Programming Language, Department of Defense MIL-

STD-1815,1983.
3. B. Craig Meyers and Andrea L. Cappellini, The Use of Representation Clauses and

Implementation-Dependent Features in Ada: I. Overview, CMU/SEI-87-TR-14, ESD-
TR-87-115, July 1987.

4. B. Craig Meyers and Andrea L. Cappellini, The Use of Representation Clauses and
Implementation-Dependent Features in Ada: IIB. Experimental Procedures,
CMU/SEI-87-TR-18, ESD-TR-87-126, July 1987.

5. B. Craig Meyers and Andrea L. Cappellini, The Use of Representation Clauses and
Implementation-Dependent Features in Ada: IIIA. Qualitative Results for VAX Ada, Ver-
sion 1.3, CMU/SEI-87-TR-17, ESD-TR-87-118, July 1987.

CMU/SEI-TR-15

10 CMU/SEI-87-TR-15 \

I

Appendix I: Questions Relevant to the Use of
Representation Clauses and Implementation-Dependent
Features
In the following, we list questions which are pertinent to the considered use of representation clauses
and implementation-dependent features. These questions apply both to the support provided by the
Ada compiler as well as the run-time environment. The questions below have been grouped into
categories.

A. General:

1. What is the basic unit of SYSTEM.STORAGE_UNIT? (This is useful when defining
record layouts.)

2. What is the ordering of allocation for storage units? Is it left-to-right or right-to-left with
respect to each other? How are bits numbered within storage units? Is it left-to-right or
right-to-left? Does the numbering always begin with zero? (This is useful when defin-
ing record layouts and verifying the actual allocation of record layouts.)

3. It is also appropriate to consider the role of the underlying architecture, particularly
regarding data conversions from representation clauses to other formats. Does the
machine include instructions for inserting and extracting bit-length fields? What are the
restrictions on the use of such instructions (for example, what is the maximum field size
to which an instruction may be applied)?

4. Is pragma OPTIMIZE supported? If so, are there any restrictions on its use?
5. The use of representation clauses may present unusual problems throughout design

and coding. What facilities exist for verifying results when representation clauses are
used? We are speaking here of the debugger; thus, are there restrictions on the use of
the debugger when representation clauses are used?

6. Does the compiler provide a load map that contains sufficient details to identify the
location of quantities specified using representation clauses?

7. Are there any restrictions on representation clauses?
8. Compiler implementors currently have the option as to what degree, if any, the features

in Chapter 13 of the Reference Manual for the Ada Programming Language will be
supported. It is conceivable that upgraded versions of an implementation will enhance
the support originally available for such features as representation clauses. How is the
documentation upgraded? Is it by release notes or page changes? The manner in
which this is accomplished can affect the ease with which documentation can be used.

B. Data Types Supported:

1. What are the basic implementations of integer types?
2. What are the basic implementations of fixed-point types?
3. What are the basic implementations of floating-point types?
4. Does the compiler provide predefined, unsigned data types? If not, is it permissible for

a user to define these types? For example, is the following legal:

type Unsigned_Small_lnt Is range 0.. 7;
for UnsignecLSmallJnt'SIZE use 3;

CMU/SEI-TR-15 11

C. Pragma PACK:

1. Does the compiler support the use of pragma PACK?
2. What restrictions are placed on the use of pragma PACK? For example, are there

certain types that may or may not be packed?

D. Length Clauses:

1. Does the compiler support the use of length clauses? What are the restrictions on their
use?

2. Are there restrictions on the use of the SIZE attribute designator in a length clause?
3. Are there restrictions on the use of the STORAGE_SIZE attribute designator in a length

clause?
4. Are there restrictions on the use of the SMALL attribute designator in a length clause?
5. When using a SIZE attribute designator in a length clause, the Reference Manual for

the Ada Programming Language states that the value of the expression specifies an
upper bound for the number of bits to be allocated. The presence of a range constraint
or the use of a predefined type implicitly defines the maximum number of bits required
to allocate objects. If extra bits are specified in the length clause, are these extra bits
allocated by the compiler?

6. Suppose a type, with associated length clause, has been specified storage where the
number of bits is not sufficient to store the specified range of values. For example,
suppose an integer type with range 10 .. 13 is defined, and three bits of storage are
allocated for that type. Is an error generated for this case? If no error is generated by
the compiler, how is a case such as this treated?

7. What impact does the length clause have on the packing algorithm of composite types?
8. What is the effect of pragma OPTIMIZE (TIME) on storage allocation when length

clauses are used?
9. What is the effect of pragma OPTIMIZE (SPACE) on storage allocation when length

clauses are used?
10. What is the effect of pragma PACK on storage allocation when length clauses are

used?

E. Enumeration Representation Clauses:

1. Does the compiler support the use of enumeration representation clauses? What are
the restrictions on their use?

2. Consider an enumeration type and associated enumeration representation clause
where the enumerated values specified are not contiguous integers, such as:

type Name Is (Name_1, Name_2, Name_3, Name_4);
for Name use

(Name_1 «> 1, NameJ2 => 5, Name_3 => 12, Name_4 => 163);

The enumeration type may not be efficiently implemented because of the noncon-
tiguous nature of the integers specified in the enumeration representation clause, il-
lustrated above. Hence, how are enumeration types represented internally, particularly
in the case where enumeration clauses are specified with noncontiguous values?

3. What is the effect of pragma PACK on storage allocation when enumeration represen-
tation clauses are used?

4. What is the effect of pragma OPTIMIZE (TIME) on storage allocation when enumeration
representation clauses are used?

12 CMU/SEI-87-TR-15

5. What is the effect of pragma OPTIMIZE (SPACE) on storage allocation when enumera-
tion representation clauses are used?

F. Record Representation Clauses:

1. Does the compiler support the use of record representation clauses? What are the
restrictions on their use?

2. What are the restrictions on the use of an alignment clause in a record representation
clause?

3. What are the restrictions on the use of component clauses in a record representation
clause?

4. Are there restrictions on the overlap of record components with respect to the basic
machine storage unit? For example, if a machine has a SYSTEM.STORAGEJJNIT
equal to 16 bits, is it permitted to have components of a record that are larger than this
value?

5. Consider the case when a record is specified with a record representation clause.
Where is a record component placed that has no associated component clause?

6. What is the effect of pragma OPTIMIZE (TIME) on storage allocation when record rep-
resentation clauses are used?

7. What is the effect of pragma OPTIMIZE (SPACE) on storage allocation when record
representation clauses are used?

8. What is the effect of pragma PACK on storage allocation when record representation
clauses are used?

G. Address Clauses:

1. Does the compiler support the use of address clauses? What are the restrictions on
their use?

2. What is the type SYSTEM .ADDRESS?
3. What is the effect of pragma OPTIMIZE (TIME) on storage allocation when address

clauses are used?
4. What is the effect of pragma OPTIMIZE (SPACE) on storage allocation when address

clauses are used?
5. Does the compiler enforce strong typing in the presence of address clauses? For

example, is the following recognized as erroneous by the compiler:

type T 1 Is range 0 .. 100;
0.1 :T_1;
for 0_1 use at 16#1000#;

type T_2 Is digits 2 range 0.0 .. 100.0;
0_2 : T_2;
for 0_2 use an 6#1000#;

6. Does the compiler or linker recognize potential conflicts when address clauses are
used? For example, suppose an address clause is present that references some ad-
dress, say X. Assume that the address X is such that it lies within the address space of
generated code. How is this case treated by the compiler and/or linker?

CMU/SEI-TR-15 13

H. Data Conversion and Assignment:

1. How is conversion accomplished between values of a type specified by the default
representation and a type specified with a representation clause? (This refers to the
use of a new (derived) type that is defined in terms of a representation clause.)

2. For conversions between objects of different types, does the compiler produce in-line
code or generate a call to a library routine to accomplish the conversion?

3. Is support of the generic function UNCHECKED_CONVERSION provided?

4. Are there any restrictions on the use of UNCHECKED_CONVERSION? For example,
are there any restrictions on the source and target types for
UNCHECKED_CONVERSION? Do they have to be of the same size?

I. Representation Attributes:

1. What are the restrictions on the use of the 'ADDRESS representation attribute? How
does the compiler interpret the use of this attribute?

2. What are the restrictions on the use of the 'SIZE representation attribute? How does
the compiler interpret the use of this attribute?

3. What are the restrictions on the use of the 'POSITION representation attribute for a
record component?

4. What are the restrictions on the use of the 'FIRST_BIT representation attribute for a
record component?

5. What are the restrictions on the use of the 'LAST_BIT representation attribute for a
record component?

6. What is the effect of pragma OPTIMIZE (TIME) on the values of the representation
attributes?

7. What is the effect of pragma OPTIMIZE (SPACE) on the values of the representation
attributes?

J. Miscellaneous:

1. Suppose an object has been allocated storage where the number of bits is not sufficient
to store the specified range of values. For example, suppose an object has been
allocated three bits of storage, but is specified to be in the range 10 through 13. Is an
error generated for this case? If no error is generated by the compiler, how is a case
such as this treated?

2. Does the compiler support the use of pragma SUPPRESS?
3. What restrictions are placed on the use of pragma SUPPRESS? For example, can

every check be suppressed?
4. Is pragma STORAGEJJNIT supported? If so, are there any restrictions on the argu-

ment?
5. Is pragma INTERFACE supported? If so, are there any restrictions on the allowable

forms and places of parameters and calls?
6. Is pragma SHARED supported? If so, are there any restrictions on its use?

7. Are there other implementation-dependent features supported such as pragmas or attri-
butes?

14 CMU/SEI-87-TR-15

SCCU«ITY CLASSIFICATION QF THIS PAGE

REPORT DOCUMENTATION PAGE
It. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb. RESTRICTIVE MARKINGS

NONE
2«. SECURITY CLASSIFICATION AUTHORITY

N/A ___
2b. OECLASSIFICATION/OOWNGRAOING SCHEDULE

N/A __

3. OISTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMBER<S)

CMU/SEI-87-TR-15

5. MONITORING ORGANIZATION REPORT NUM8ERIS)

ESD-TR-87-116

6«. NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INST.

(5b. OFFICE SYMBOL
(If applicable)
SEI

7«. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

6c. AOORESS (City. State and ZIP Code)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. AOORESS (City. State and ZIP Code)

ESD/XRS1
HANSCOM AIR FORCE BASE
HANSr.fM. MA 01711

8a. NAME OF FUNOING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b. OFFICE SYMBOL
(If applicable)

ESD/XRS1

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-85-0003

8c. ADDRESS (City, State and ZIP Code)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

10. SOURCE OF FUNDING NOS.

11. TITLE (Include Security Classification)

The Use of Representation Clauses and Implemenl

PROGRAM
ELEMENT NO.

63752F

ation-Depend^

PROJECT
NO.

N/A

nt Featurels

TASK
NO.

N/A

in Ada:

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S)

B. Craig Meyers and Andrea L. Cappellini
IIA. Evaluation Questions

13«. TYPE OF REPORT

FTNAI

13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yr„ Mo., Day)

July 1987
15. PAGE COUNT

18
16. SUPPLEMENTARY NOTATION

17 COSATI CODES

FIELD GROUP SUB. GR.

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
representation clauses in Ada
implementation-dependent features in Ada
assessment questions

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report is the second in a series on the use of representation clauses and
implementation-dependent features in Ada. It is the purpose of this
document to specify a set of questions relevant to the assessment of the support
of representation clauses and implementation-dependent features provided by an
Ada compiler. The questions identified are categorized according to functionality
and address both qualitative and quantitative aspects.

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED f] SAME AS RPT. D OTIC USERS D

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION
22a. NAME OF RESPONSIBLE INDIVIDUAL

KARL H. SHINGLER
22b. TELEPHONE NUMBER

(Include Area Code»

412 268-7630

22c. OFFICE SYMBOL

SEI JPO
DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

SECURITY CLASSIFICATION OP THIS PAGE

».-,...».TV <-i ACCiPir ATION OF THU »A/-.C

